Guia básica sobre overclocking (+ A64 overclock "avanzado")
-
Write Recovery Time(tWR)
Settings = Auto, 2, 3.
From Adrian Wong’s site: http://www.rojakpot.com/
“This BIOS feature controls the Write Recovery Time (tWR) of the memory modules. It specifies the amount of delay (in clock cycles) that must elapse after the completion of a valid write operation, before an active bank can be precharged. This delay is required to guarantee that data in the write buffers can be written to the memory cells before precharge occurs. The shorter the delay, the earlier the bank can be precharged for another read/write operation. This improves performance but runs the risk of corrupting data written to the memory cells. It is recommended that you select 2 Cycles if you are using DDR200 or DDR266 memory modules and 3 Cycles if you are using DDR333 or DDR 400 memory modules. You can try using a shorter delay for better memory performance but if you face stability issues, revert to the specified delay to correct the problem.”Slight Influence on Bandwidth/Stability.
Suggested Settings for DFI: 2 yields better performance, and 3 yields better stability/over clock. (Lower = Faster)
Write to Read Delay(tWTR)
Settings: Auto, 1, 2
From Adrian Wong’s site: http://www.rojakpot.com/
”This BIOS feature controls the Write Data In to Read Command Delay (tWTR) memory timing. This constitutes the minimum number of clock cycles that must occur between the last valid write operation and the next read command to the same internal bank of the DDR device. The 1 Cycle option naturally offers faster switching from writes to reads and consequently better read performance. The 2 Cycles option reduces read performance but it will improve stability, especially at higher clock speeds. It may also allow the memory chips to run at a higher speed. In other words, increasing this delay may allow you to overclock the memory module higher than is normally possible. It is recommended that you select the 1 Cycle option for better memory read performance if you are using DDR266 or DDR333 memory modules. You can also try using the 1 Cycle option with DDR400 memory modules. But if you face stability issues, revert to the default setting of 2 Cycles.”From the DFI BIOS: “This Bios setting specifies the write to read delay. Samsung calls this TCDLR (last data in to read command). It is measured from the rising edge and following the last non-mask data strobe to the rising edge of the next read command. JDEC usually specifies this as one clock.”
Slight Influence on Bandwidth/Stability.
Suggested Settings for DFI: 1 yields better performance, and 2 yields better stability/over clock. (Lower = Faster)
Read to Write Delay(tRTW)
Settings = Auto, 1-8 in 1.0 increments.
Paraphrased From Adrian Wong’s site: http://www.rojakpot.com/
”When the memory controller receives a write command immediately after a read command, an additional period of delay is normally introduced before the write command is actually initiated. As its name suggests, this BIOS feature allows you to skip (or raise) that delay. This improves the write performance of the memory subsystem. Therefore, it is recommended that you enable this feature for faster read-to-write turn-arounds. However, not all memory modules can work with the tighter read-to-write turn-around. If your memory modules cannot handle the faster turn-around, the data that was written to the memory module may be lost or become corrupted. So, when you face stability issues, disable (or raise the value) of this feature to correct the problem.”From the DFI BIOS: “This field specifies the read to write delay. This is not a DRAM specified timing parameter, but must be considered due to the routing latencies on the clock forwarded bus. It is counted from the first address bus slot which was not associated with part of the read burst.”
Slight Influence on Bandwidth/Stability.
Suggested Settings for DFI: 1 yields better performance, and 4 yields better stability/over clock (4 is overkill). Recommend try 1 and move to 2 if unstable. (Lower = Faster)
Refresh Period(tREF)
Settings = Auto, 0032-4708 in variable increments.
1552= 100mhz(?.?us)
2064= 133mhz(?.?us)
2592= 166mhz(?.?us)
3120= 200mhz(?.?us)(seems to be a/ Bh-5,6 sweet spot at 250+mhz)
–-------------------
3632= 100mhz(?.?us)
4128= 133mhz(?.?us)
4672= 166mhz(?.?us)
0064= 200mhz(?.?us)0776= 100mhz(?.?us)
1032= 133mhz(?.?us)
1296= 166mhz(?.?us)
1560= 200mhz(?.?us)1816= 100mhz(?.?us)
2064= 133mhz(?.?us)
2336= 166mhz(?.?us)
0032= 200mhz(?.?us)0388= 100mhz(15.6us)
0516= 133mhz(15.6us)
0648= 166mhz(15.6us)
0780= 200mhz(15.6us)0908= 100mhz(7.8us)
1032= 133mhz(7.8us)
1168= 166mhz(7.8us)
0016= 200mhz(7.8us)1536= 100mhz(3.9us)
2048= 133mhz(3.9us)
2560= 166mhz(3.9us)
3072= 200mhz(3.9us)3684= 100mhz(1.95us)
4196= 133mhz(1.95us)
4708= 166mhz(1.95us)
0128= 200mhz(1.95us)Paraphrased From Adrian Wong’s site: http://www.rojakpot.com/
”This BIOS feature allows you to set the refresh interval of the memory chips. There are (several) different settings as well as an Auto option. If the Auto option is selected, the BIOS will query the memory modules' SPD chips and use the lowest setting found for maximum compatibility. For better performance, you should consider increasing the Refresh Interval from the default values (15.6 µsec for 128Mbit or smaller memory chips and 7.8 µsec for 256Mbit or larger memory chips) up to 128 µsec. Please note that if you increase the Refresh Interval too much, the memory cells may lose their contents. Therefore, you should start with small increases in the Refresh Interval and test your system after each hike before increasing it further. If you face stability problems upon increasing the refresh interval, reduce the refresh interval step by step until the system is stable.From Sierra at ABXzone: The information below is taken from an old RAM guide. In a nutshell a memory module is made up of electrical cells. The refresh process recharges these cells, which are arranged on the chips in rows. The refresh cycle refers to the number of rows that must be refreshed.
"Periodically the charge stored in each bit must be refreshed or the charge will decay and the value of the bit of data will be lost. DRAM (Dynamic Random Access Memory) is really just a bunch of capacitors that can store energy in an array of bits. The array of bits can be accessed randomly. However, the capacitors can only store this energy for a short time before it discharges it. Therefore DRAM must be refreshed (re-energizing of the capacitors) every 15.6µs (a microsecond equals 10-6 seconds) per row. Each time the capacitors are refreshed the memory is re-written. For this reason DRAM is also called volatile memory. Using the RAS-ONLY refresh (ROR) method, the refresh is done is a systematic manner, each column is refreshed row by row in sequence. In a typical EDO module each row takes 15.6µs to refresh. Therefore in a 2K module the refresh time per column would be 15.6µs x 2048 rows = 32ms (1 millisecond equals 10-6 seconds). This value is called the tREF. It refers to the refresh interval of the entire array."
Here is an interesting discussion of tREF on the DFI forum: http://www.dfi-street.com/forum/showthread.php?t=10411
Slight Influence on Stability/Bandwidth.
Suggested Settings for DFI: It appears that tREF, like the tRAS, is not an exact science. It also seems that the 15.6us, and 3.9us settings work well, and that the 1.95us settings give lower bandwidth. The unknown (?.?us) are shots in the dark. A lot of users are finding setting 3120= 200mhz(?.?us) gives the best balance of performance, and stability, but this will probably vary greatly from one type of RAM to another.
Write CAS# Latency(tWCL)
Settings = Auto, 1-8
Paraphrased from Lost Circuits: http://www.lostcircuits.com/
”Variable Write CAS Latency (tWCL): Conventional SDRAM including DDR I uses random accesses as the name implies. This means that the controller is free to write to any location within the physical memory space, which, in most cases, means that it will write to whichever page is open and to the column address closest to the (CAS) strobe. The result is a write latency of 1T, as opposed to read or CAS-Latency values of 2, 2.5 or 3. (This setting should almost) always be set to 1 unless using DDRII.”Large Influence on Stability/ Unknown Influence on bandwidth.
Suggested Settings for DFI: Most people can only post using Auto or 1. RGone over at DFI-Street says that #5 in this setting works on his board with “any” brand or size and speed of memory! Recommend try 1.
DRAM Bank Interleave
Settings = Enable, Disable
Paraphrased from Adrian Wong’s site: http://www.rojakpot.com/
”This BIOS feature enables you to set the interleave mode of the SDRAM interface. Interleaving allows banks of SDRAM to ********* their refresh and access cycles. One bank will undergo its refresh cycle while another is being accessed. This improves memory performance by masking the refresh cycles of each memory bank. A close examination will reveal that since the refresh cycles of all the memory banks are staggered, this produces a kind of pipelining effect. However, bank interleaving only works if the addresses requested consecutively are not in the same bank. If they are in the same memory bank, then the data transactions behave as if the banks were not interleaved. The processor will have to wait until the first data transaction clears and that memory bank refreshes before it can send another address to that bank. All current SDRAM modules support bank interleaving. It is recommended to enable this feature whenever possible.”Large Influence on Bandwidth/Stability
Suggested Settings for DFI: Set to Enable whenever possible–--it is a fairly influential setting for improving bandwidth. Disable for stability and a corresponding loss in bandwidth. (Enable = Faster)
DQS Skew Control
Settings = Auto, Increase Skew, Decrease Skew
From Lost Circuits: http://www.lostcircuits.com/
"It is true that lower voltage swings enable higher frequencies but after a certain point, the ramping of the voltages will show a significant skew. The skew can be reduced by increased drive strength, however, with the drawback of a voltage overshoot / undershoot at the rising and falling edges, respectively. One additional problem with high frequency signaling is the phenomenon of trace delays. The solution in DDR was to add clock forwarding in form of a simple data strobe. DDR II takes things further by introducing a bidirectional, differential I/O buffer strobe consisting of DQS and /DQS as pull-up and pull-down signals. Differential means that the two signals are measured against each other instead of using a simple strobe signal and a reference point. In theory the pull-up and pull-down signals should be mirror-symmetric to each other but reality shows otherwise. That means that there will be skew-induced delays to reaching the output high and low voltages (VOH and VOL) and the cross points between DQS and /DQS used for clock forwarding will not necessarily coincide with the DQ crossing the reference voltage (Vref) or even be consistent from one clock to the next. The mismatch between clock and data reference points is referred to as the DQ-DQS skew."Slight Influence on Bandwidth/Stability.
Suggested Settings for DFI: Increase for performance, and Decrease for Stability. Recommend try Increase. (Increase = Faster, Decrease = Slower)
DQS Skew Value
Settings = Auto, 0-255 in 1.0 increments.
This is the value that is Increased or Decreased when you set the DQS skew control. It does not appear to be a very sensitive timing.
Slight Influence on Bandwidth/Stability.
Suggested Settings for DFI: This does not appear to be a very sensitive timing. Try 50-255 with “Increase Skew” set in the above timing. (Higher = Faster)
DRAM Drive Strength
Settings = Auto, 1-8 in 1.0 increments.
Paraphrased From Adrian Wong’s site:http://www.rojakpot.com/ “Sometimes called driving strength. This feature allows you to control the memory data bus' signal strength. Increasing the drive strength of the memory bus can increase stability during overclocking. DRAM drive strength refers to the signal strength of the memory data line. A higher number means a stronger signal and is generally recommended for an overclocked module to improve stability. Supposedly TCCD works better with weak drive strength while just about everything else prefers a stronger signal.”
From bigtoe: “If you leave the option at Auto this will set a weak drive strength, this is good for TCCD based modules but bad for anything else. From testing and debugging the board I have concluded the following. Options 1 3 5 7 are all weak, as is Auto, setting. 1 is actually the weakest option with 7 being as close to the normal weak setting DFI will allow us. Options 2 4 6 8 are the Normal settings, with 8 being the highest strength setting. If you are using TCCD you may want to try 3 5 or 7 as the drive settings as they usually seem to allow the modules to clock well. If you are using VX, or the new BH Gold, or any other modules from the OCZ range you may want to try 8 or 6.”
Large Influence on Stability.
Suggested Settings for DFI: From bigtoe: “If you are using TCCD you may want to try 3 5 or 7 as the drive settings as they usually seem to allow the modules to clock well. If you are using VX, or the new BH Gold, or any other modules from the OCZ range you may want to try 8 or 6.”
-
DRAM Data Drive Strength
Settings = Levels 1-4 in 1.0 increments.
From Adrian Wong’s site: http://www.rojakpot.com/
"The MD Driving Strength determines the signal strength of the memory data line. The higher the value, the stronger the signal. It is mainly used to boost the DRAM driving capability with heavier DRAM loads (multiple and/or double-sided DIMMs). So, if you are using a heavy DRAM load, you should set this function to Hi or High. Due to the nature of this BIOS option, it's possible to use it as an aid in overclocking the memory bus. Your SDRAM DIMM may not overclock as well as you wanted it to. But by raising the signal strength of the memory data line, it is possible to improve its stability at overclocked speeds. But this is not a surefire way of overclocking the memory bus. In addition, increasing the memory bus signal strength will not improve the performance of the SDRAM DIMMs. So, it's advisable to leave the MD Driving Strength at Lo/Low unless you have a high DRAM load or if you are trying to stabilize an overclocked DIMM."Large Influence on Stability.
Suggested Settings for DFI: Many have suggested using Level 1 or 3, if you have CPC enabled. With CPC, anything above level 1 gives some users extreme instability. Some users like level 3 with CPC enabled. Some others have had success with using level 2-4 if CPC is disabled. I had good luck with CPC enabled and Level 4. (Higher = Faster)
Max Async Latency
Settings = Auto, 0-15 in 1.0 increments.
I could not find anything on this particular setting and am not sure what portion of RAM functions it affects. If you have information on this setting, please post and I will update this section. From HiJon89: “The Max Async Latency setting will show its biggest difference in the Everest Latency Test. Going from 8ns to 7ns on my BH-6 made a 1ns difference in Everest Latency. Going from 7ns to 6ns dropped it another 2ns.”
Slight Influence on Bandwidth/Stability.
Suggested Settings for DFI: 7ns is the default–--Suggest you start at 7ns and work from there trying 5.0-10.0. From HiJon89: “6ns is very tight, I would recommend running 6ns for UTT or BH-5 but not TCCD. 7ns is looser, good for getting higher clocks on UTT or BH-5. 8ns is pretty loose for UTT or BH-5, but its just right for hitting DDR600 with TCCD. 9ns is very loose even for TCCD and should really only be used to try to hit DDR640+.” (Lower = Faster)
Read Preamble Time
Settings = Auto, 2.0-9.5 nanoseconds, in 0.5 increments.
From the DFI BIOS: “This BIOS setting specifies the time prior to the max-read DQS return. It shows when the DQS should be turned on.” From an old Samsung memory guide: “Preamble of DQS on reads: DDR SGRAM uses a data strobe signal(s),DQS, to increase performance. The DQS signal is bidirectional which toggles when there is any data transfer from DDR SGRAM to graphic controller or from graphic controller to DDR SGRAM. Prior to a burst of read data, DQS signal transitions from Hi-Z to a valid logic low. This is referred to as the data strobe preamble. This transition from Hi-Z to logic low nominally happens one clock cycle prior to the first edge of valid data.”
Slight Influence on Bandwidth/Stability.
Suggested Settings for DFI: 5.0 ns is the default when set to Auto----suggest starting at 5.0 and then working within this range (4.0-7.0) depending on ram. (Lower = Faster)
Idle Cycle Limit
Settings = Auto, 0-256 in varied increments.
From the DFI BIOS: “This BIOS setting specifies the number of memclocks before forcibly closing (pre-charging) an open page.” It appears that this setting is the maximum number of tries allowed for a page of memory to be read before arbitration kicks in and forces pre-charge once again for that page.
Slight Influence on Bandwidth/Larger Influence on Stability.
Suggested Settings for DFI: The Auto setting defaults to 256 clocks which seems to be overkill. If your RAM is lower grade----then I would stay with Auto. If your RAM is a step up, I would try 16-32 clocks. I had good luck with 16 clocks on BH-5. (Lower = Faster)
Dynamic Counter
Settings = Auto, Enable, Disable.
From the DFI BIOS: “This BIOS setting specifies dynamic idle cycle counter to enable or disable. If enabled, it forces each entry in the page table to dynamically adjust the idle cycle limit based on page conflict/page miss (PC/PM) traffic.” It appears that this setting is directly related to Idle Cycle Limit and if enabled, would override the existing clock settings for Idle Cycle Limit and force that setting to dynamically adjust based upon conflicts occurring.
Slight Influence on Bandwidth/Stability for some----- Large Influence on Bandwidth/Stability for others.
Suggested Settings for DFI: Auto usually disables this setting. Enable for performance increase. Disable for stability increase. This setting can have a fairly large difference----I noticed immediate crashes when set to Enable until I had adjusted other settings. I also noticed an improvement in bandwidth once I found other settings which allowed me to enable this one. Aurhinius has reported that disabling IMPROVED his memory bandwidth by 50 points using TCCD. This is just one of thoses settings that definitely depends on the BIOS version and type of memory being used. (Enable = Faster = Maybe)
R/W Queue Bypass
Settings = Auto, 2x, 4x, 8x, 16x.
From the DFI BIOS: “This BIOS setting specifies the number of times the oldest operation in the DCI (Device Control Interface) read/write queue can be bypassed before the arbiter is overwritten and the oldest operation is chosen.” Similar to Idle Cycle Limit except that this arbiter affects the Read/Write que of the memory page.
Slight Influence on Bandwidth/Larger Influence on Stability.
Suggested Settings for DFI: 16x is the default and I would stay with that unless you are having stability problems. If unstable, suggest using 8x or even 2x or 4x for max OC. (Larger = Faster----Smaller = More Stable)
Bypass Max
Settings = Auto, 0x-7x in 1.0 increments.
From the DFI BIOS: “This BIOS setting specifies the number of times the oldest entry in DCQ (Dependence Chain Que?) can be bypassed in arbitration before the arbiter choice is vetoed.” I looked all over for this one and I believe it has to do with the memory’s link to the CPU memory controller. If you find other information please feel free to post it and I will update this.
Slight Influence on Bandwidth/Stability.
Suggested Settings for DFI: The default is 7X. Suggest 4x-7x for max performance/stability. Bypass max from 0X - 7X, 7X being the most agressive giving the highest bandwidth. Low latency dimms suit 7X with higher latency and high FSB needing 4X to 6X to work well.Suggest trying 5X and work up to 7X checking stability.
32 Byte Granulation
Settings = Auto, Disable (8burst), Enable (4burst).
From the DFI BIOS: “This BIOS setting specifies if the burst counter should be chosen to optimize data bus bandwidth for 32 byte accesses.” Disabling allows for the best performance (largest size of burst).
Slight Influence on Bandwidth/Larger Influence onStability.
Suggested Settings for DFI: Auto selects Disable (8burst) as the default in most cases. Try Disable (8burst) for more bandwidth. Try enabling 4 burst for more stability. (Disable = Faster)
Saludos -
Cuando tenga tiempo lo traduzco, lo añado a la rama de la DFI fijada y pondré un link en esta guia.
-
yo podria traducir pero ahi palabrotas que no se lo que son y el tito google como que no las sabe, pero esta muy interesante la guia
saludos -
muchas gracias ;D ;D ;D ;D ;D
les debo una gigante me alegro que entiendan a que me referia
me la voy a poner a leer
gracias xD
pd:lo ayudaria lastima que no cazo una de ingles
saludos -
de nada para eso estamos, krampak en cuanto pueda hace la traduccion que es mas expertiyo en ingles de pc yo soy mas de aplicado a la hosteleria ;D , y nada ahi tienes para rato eran 30000 y pico letras he tenido que separar en 3 post si estan mal me lo dices y lo arreglo
saludos -
gracias SEDG.RaVeN y krampak son unos grandes
como ven soy nuevo en esto y a no se como sumarle reputacion
saludos -
Eso solo lo hacen los veteranos a nosotros no nos dejan y cuando krampack traduzca el manuscrito le voy a decir donde tengo e bar para invitarle
saludos y a estudiar que ayi no se pero aqui son las 1:30 y tengo que abrir a las 8:30
ta mañana -
Tio me va a venir que no veas puesto que estoy a punto de pillar una DFI nforce 4 ultra-D, Y LE TENIA PANICO a esta configuracion, acostrumbrado a las de mi AN7, esto es un mundo, hay que hacer un MASTER para las DFI. GRACIAS DE VERAS POR ESTA ESTUPENDA GUIA,
-
Jajaj si un doctorado y sacarlo con magna cum laude Pues pedazo de detalle y un premio para G.Skill que dentro del blister te viene un papel con la configuracion de TODOS los timmings para la bios de la lanparty es la unica memo que lo he visto y desde el año que estoy en esto de l oc (desde que estoy registrado en la pagina) he tenido ya 5 pares distintos de memos, vamos un detallazo por parte de G.Skill
saludos -
Olá,que tal estais.
-Pues finalmente,como é conseguido sacar el procesaror AMD de la mia placa madre ASUS A7N8xDELUXE (2.0) con la ultima bios 1008,aqui vos dejo sus datos para saber si ya viene desbloqueado o no : AMD ATHLON AXDA2600DKV40 T838206A42297 AQZFA0404SPMW 1999 AMD ?
-O qual es la mejor manera por favor,de ver si está desbloqueado o no ?Gracias.
Hasta Prontito.
-
Esta bloqueado
Se ve por la semana, el tuyo es de la semana 4 del 2004 y se empezaron a bloquear a partir de la semana 39 del 2003.
-
Yo tengo un athlon xp 2600+ desbloqueado, tiene 2 años de uso, cuanto me pagarian por el?
-
YO no pagaria mas de 45€. Piensa que por 60€ tienes un Sempron 2600+ aunque solo tiene 128KB de caché, asi que mejorar compararlo con un Palermo 2800+ (256KB) que sale por 75€. Sigo manteniendo el precio
-
Ya, pero los athlon xp creo que van mejor que los sempron y no se si a los sempron se les puede hacer overclock y menos si estan bloqueados, con mi athlon xp, una buena placa y refrigeracion si puede llegar a los 2.6 Ghz, yo lo vi por mas de 60€ el mio, y despues que un 3200 ya vale mas de 100€ , as tiene una capacidad de overclock muy grande, y aparte de los FX, son los unicos que no estan bloqueados, y hacen falta buenas memos.
-
Olá,que tal estais.
-Pues finalmente,como é conseguido sacar el procesaror AMD de la mia placa madre ASUS A7N8xDELUXE (2.0) con la ultima bios 1008,aqui vos dejo sus datos para saber si ya viene desbloqueado o no : AMD ATHLON AXDA2600DKV40 T838206A42297 AQZFA0404SPMW 1999 AMD ?
-O qual es la mejor manera por favor,de ver si está desbloqueado o no ?Gracias.
Hasta Prontito.
Esta BLOQUEADO es del año 04 semana 04 : AQZFA 04 04 SPMW, AMD bloqueo todos los micros desde la semana 39 del año 2003
el antiguo mio XP2600+ tenia: AIUHB 03 02 WPHW estaba DESBLOQUEADO -
Olá,que tal estais.
Muchissimas Gracias por vuestras respuestas.
-Me poderieins dizir entonces por favor,qual és la mejor manera (la que sea mas façil) de desbloquear este
mio processador AMD ?
-Tiengo una fuente de alimentaçion eurotech de 400w solamente,sera suficiente para hacer overclook
através del mio equipo,constituido por ese AMD ATHLON XP 2600+,en una ASUS A7N8 X DELUXE (2.0) BIOS
1008,memoria dual channel twinmmos 3200 (400MHZ) grafica FX5200 (128MB) con disco WESTERN DIGITAL
64gb de 10.000rrpm ?A ver si me poneis algunas fotos de como podere desloquear el AMD,por favor ?
Muchissimas Gracias.
Hasta Prontito.
-
Pues… mmmm... no se puede desbloquear
-
No se podian desbloquear haciendo un puente o algo parecido en el procesador?
-
Si, pero no sirve de nada si tiene una placa Nforce 2.