Vamos a ver si nos aclaramos:
Las anteriores afirmaciones son termodinámicamente ciertas… eso no quiere decir que no existan multitud de matices, lo importante es el concepto y no mezclarlos.
Zul... efectivamente, has metido el dedo en la llaga... ¿qué es lo que más nos importa..?
Bueno; el objetivo es acercar la tª del micro lo máximo posible al la ambiente (que en este proyecto es nuestra tª límite inferior). en otro msg. explico cómo se puede hacer y cual es el problema...
Respecto a mi anterior contestación he intentado aclarar los conceptos que determinan a priori una electrobomba u otra... y no he hablado de radiadores ni de bloques (se entiende que no me refiero a ellos...).
El criterio de elección de una electrobomba se defiene básicamente con los siguientes parámetros:
- Máxima disipación de potencia (la que el agua ha de adquirir del bloque...) tomando un valor inicial (depende de muchos factores--> tipo de chip, tensión, overclock, ) con 150 w. van bien casi todos...
- Diferencial de temperatura máximo que ha de alcanzar entre la entrada y salida del bloque. Este ha de ser el menor posible, para aumentar la transferencia térmica del bloque al agua. ( que es lo que importa... ) Tomaré 1ºC
- Fluido caloportador... supondremos el agua (aunque lleve glicol, que como es sabido cambia ligeramente las constantes del agua.. llámese propiedades coligativas.)
- Aporte de energía calorífica de la bomba.- ha de sumarse... a la del chip y se divide en:
energía mecánica transferida al agua que se transforma en calor debido al rozamiento (pérdidas de carga o contrapresión). Es inevitable en todo tipo de bombas y corresponde aproximadamente a un 80% de la potencia consumida.
energía calorífica por perdidas en motor. Se debe al efecto Joule en bobinados, pérdidas magnéticas, rozamientos, etc. y se puede evitar si la bomba No es sumergida es decir refrigera por aire.
¡ por esta última razón no ha de ser exageradamente grande pues no haremos más que calentar más el agua! si bien es compensable en parte con aumento del radiador.
Cálculo (primera aproximación):
Tomando una potencia de bomba inicial (por ej. 25 W. sumergida) y añadiendo la del micro tenemos una potencia A TRANSPORTAR por el fluido (QUE ES LA UNICA MISION DE LA BOMBA Y NO AUMENTAR LA TRANSFERENCIA aunque este hecho pueda suceder al aumentar el caudal.. lógicamente por otros motivos) de 150 w. + 25 W. = 175 W.
CAUDAL = POTENCIA/ (CALOR ESPECIFICO X DIFER. TEMPER.)
Caudal(en kgr./hora)=(175 W. x 0.865 Kcal/hora) / (1Kcal/KgrºC x 1ºC)= 151,38 Kgr/hora <> 150 litros /hora
Presión: este tema es más delicado pues un cálculo meramente aproximativo llevaría tiempo y situaciones muy concretas...
Depende de la estructura del bloque (si lleva laberinto interior mucha contrapresión , si solo es depósito prácticamente nada ) de la sección de tuberías, de su longitud, del radiador y su forma interna.. etc. por ello no voy a entrar en el tema.. (es para rato largo..)
Tomar un aproximación empírica... veréis con una instalción "normal" las pérdidas de carga no deberían superar 0,1 Kgr/cm2 o lo que es lo mismo 1 metro de columna de agua. Si lo hiciesen estaríamos haciendo algo mal:
Laberinto de bloque muy pequeño ---> Aumenta muchísimo.
Sección de tubería --> menos de 8 mm. interior vamos pero que muy mal... recomiendo 10 ó 12 para que la velocidad del fluido no sobrepase 1 m/seg ya que a partir de ahí la pérdida se va haciendo exponencial... (es un valor de referencia meramente orientativo).
Radiador sucio o de pequeña sección--> no se suele dar.. al contrario el radiador es el elemento que menos contrapresión aporta al sistema.
Hay algo que no se debe olvidar... AL AUMENTAR EL CAUDAL A UN MISMO CIRCUITO LA CONTRAPRESION CRECE DE FORMA EXPONENCIAL. y por ello el consumo de energía se dispara sin obteniendo pequeños aumentos de caudal. Es preferibe DISMINUIR LA RESISTENCIA AL MOVIMIENTO DEL FLUIDO y con muy poca potencia obtendrás enormes caudales... Mirar las gráficas de caudal-presión y os daréis cuenta de que interesa tener grandes secciones y bloques no muy complicados (esta es la pieza fundamental y no está nada claro que un laberinto interior mejore el rendimiento a mi juicio si no se pone una bomba que lo compense este no hace nada, o se diseña bien o lo que gana de un lado lo pierde por otro.)
Del cálculo se deducen varias cosas:
- Aumentar mucho la potencia de bomba no siempre aporta beneficios... tan solo leves mejoras.
-Disminuir la contrapresión siempre trae cuenta.
-Un aumento de potencia a disipar requiere un caudal muy poco superior.
- Una bomba sumergida aumenta muy poco la potencia a disipar y el caudal para ello es insignificante.
Para bloques, radiadores y demás en otro msg.
Un saludo y espero os sea de ayuda